National foreword

This British Standard is the UK implementation of EN 1317-2:2010. It supersedes BS EN 1317-2:1998 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee B/509/1, Road restraint systems.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© BSI 2010

ISBN 978 0 580 54026 4

ICS 13.200; 93.080.30

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 August 2010.

Amendments issued since publication

Date Text affected
Road restraint systems - Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers including vehicle parapets
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1. Scope</td>
<td>7</td>
</tr>
<tr>
<td>2. Normative references</td>
<td>7</td>
</tr>
<tr>
<td>3. Performance classes</td>
<td>7</td>
</tr>
<tr>
<td>3.1 General</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Containment levels</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Impact severity</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Location of the ATD</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Deformation of the restraint system</td>
<td>9</td>
</tr>
<tr>
<td>3.6 Vehicle pedestrian parapets</td>
<td>13</td>
</tr>
<tr>
<td>4. Impact test acceptance criteria</td>
<td>13</td>
</tr>
<tr>
<td>4.1 General</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Safety barrier including vehicle parapet behaviour</td>
<td>14</td>
</tr>
<tr>
<td>4.3 Test vehicle behaviour</td>
<td>15</td>
</tr>
<tr>
<td>4.4 Severity index</td>
<td>17</td>
</tr>
<tr>
<td>4.5 Test vehicle deformation</td>
<td>17</td>
</tr>
<tr>
<td>4.6 Safety barrier deformation</td>
<td>17</td>
</tr>
<tr>
<td>4.7 Tests for system type tested safety barriers (Families of barriers)</td>
<td>17</td>
</tr>
<tr>
<td>5. Test methods</td>
<td>17</td>
</tr>
<tr>
<td>5.1 Test site</td>
<td>17</td>
</tr>
<tr>
<td>5.2 Test vehicles</td>
<td>18</td>
</tr>
<tr>
<td>5.3 Safety barrier</td>
<td>18</td>
</tr>
<tr>
<td>5.3.1 General</td>
<td>18</td>
</tr>
<tr>
<td>5.3.2 Installation</td>
<td>18</td>
</tr>
<tr>
<td>5.3.3 Position of the impact point</td>
<td>18</td>
</tr>
<tr>
<td>5.4 Accuracies and limit deviations of impact speeds and approach angle</td>
<td>18</td>
</tr>
<tr>
<td>5.4.1 Vehicle impact speed</td>
<td>18</td>
</tr>
<tr>
<td>5.4.2 Vehicle approach angle</td>
<td>19</td>
</tr>
<tr>
<td>5.4.3 Combined limit deviation of speed and angle</td>
<td>19</td>
</tr>
<tr>
<td>5.5 Vehicle instrumentation</td>
<td>19</td>
</tr>
<tr>
<td>5.6 Photographic coverage</td>
<td>20</td>
</tr>
<tr>
<td>6. Test report</td>
<td>21</td>
</tr>
<tr>
<td>Annex A (normative) Detailed Test Report Template</td>
<td>22</td>
</tr>
<tr>
<td>Annex B (informative) Criteria for sufficient test length evaluation</td>
<td>27</td>
</tr>
<tr>
<td>Bibliography</td>
<td>28</td>
</tr>
</tbody>
</table>
Foreword

This document (EN 1317-2:2010) has been prepared by Technical Committee CEN/TC 226 “Road equipment”, the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2011, and conflicting national standards shall be withdrawn at the latest by January 2011.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 1317-2:1998.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EU Directive(s).

EN 1317 consists of the following parts:

— EN 1317-1, Road restraint systems — Part 1: Terminology and general criteria for test methods;

— EN 1317-2, Road restraint systems — Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers including vehicle parapets;

— EN 1317-3, Road restraint systems — Part 3: Performance classes, impact test acceptance criteria and test methods for crash cushions;

— ENV 1317-4, Road restraint systems — Part 4: Performance classes, impact test acceptance criteria and test methods for terminals and transitions of safety barriers;

— prEN 1317-4, Road restraint systems — Part 4: Performance classes, impact test acceptance criteria and test methods for transitions of safety barriers (under preparation: this document will supersede ENV 1317-4:2001 for the clauses concerning transitions);

— EN 1317-5, Road restraint systems — Part 5: Product requirements and evaluation of conformity for vehicle restraint systems;

— prEN 1317-6, Road restraint systems — Pedestrian restraint systems — Part 6: Pedestrian Parapet (under preparation);

— prEN 1317-7, Road restraint systems — Part 7: Performance classes, impact test acceptance criteria and test methods for terminals of safety barriers (under preparation: this document will supersede ENV 1317-4:2001 for the clauses concerning terminals);

— prEN 1317-8, Road restraint systems — Part 8: Motorcycle road restraint systems which reduce the impact severity of motorcyclist collisions with safety barriers (under preparation).

Annex A is normative and Annex B is informative.

The significant technical changes incorporated in this revision are:

3.2 Containment levels
In Table 2 the new containment classes L1, L2, L3, L4a and L4b have been added, requiring the same tests of the corresponding H classes plus the test TB 32.

3.3 Impact severity

The requirement for the index PHD (Post impact Head Deceleration) has been cancelled. Only ASI and THIV are required.

3.5 Deformation of the restraint system

New requirement on the accuracy of measurement of Dynamic Deflection and Working Width:

The accuracy required for the measurement of the dynamic deflection and for the working width shall be 10 % but not less than 0.1 m.

New definition of vehicle intrusion (VI).

New definitions of Normalised Dynamic Deflection \(D_n \), Normalised Working Width \(W_n \) and Normalised Vehicle Intrusion \(V_{In} \).

Table 4 – Levels of working width based on the normalised values

Table 5 – Levels of normalised vehicle intrusion (new item)

4 Impact test acceptance criteria

Table 6 – Safety barrier test parameters includes containment levels L

4.2 Safety barrier including parapet behaviour

The first two sentences of the paragraph in the 1998 text:

The safety barrier shall contain and redirect the vehicle without complete breakage of the principal longitudinal elements of the system.

No major part of the safety barrier shall become totally detached or present an undue hazard to other traffic, pedestrians or personnel in a work zone.

are replaced by:

The safety barrier including parapet shall contain the vehicle without complete breakage of any of the principal longitudinal elements of the system.

All totally detached parts of the safety barrier with a mass greater than 2.0 kg shall be identified, located and recorded in the test report with their size.

4.3 Test vehicle behaviour

The first two sentences of the paragraph in the 1998 text:

The centre of gravity of the vehicle shall not cross the centreline of the deformed system.

The vehicle shall remain upright during and after impact, although moderate rolling, pitching and yawing are acceptable.

are replaced by:
During and after the impact, no more than one of the wheels of the vehicle shall completely pass over or under the safety barrier. The vehicle shall not roll over (including rollover of the vehicle onto its side) during or after impact.

For tests with HGVs and buses, not more than 5% of the mass of the ballast shall become detached or be split during the test up to the time when the wheel tracks of the vehicle leaves the exit box.

4.4 Severity Index

The requirement for the index PHD (Post impact Head Deceleration) has been cancelled. Only ASI and THIV are required.

4.7 Tests for system type tested safety barriers (Families of barriers)

New specifications for families of barriers.

5 Test methods

The specifications of 5.1 “Test Site” and 5.2 “Test Vehicles” are moved to Part 1.

5.3.2 Installation

This subclause has been entirely revised with detailed requirements on the test length, end anchorages, pretensioned systems and infilling of vehicle pedestrian parapets.

5.3.3 Position of the impact point

New requirement:

If the test house chooses an impact point other than that at a point about one third of the installation length, in order to ensure worst-case conditions, then this choice shall be justified in the test report.

5.5 Vehicle instrumentation

The specifications of 5.5 are moved to Part 1.

5.6 Photographic coverage

New requirement:

Normal speed cameras shall be operated at a minimum of 24 frames per second.

Annex A – Detailed Test Report Template

New normative item.

Annex B – Criteria for sufficient test length evaluation

New informative item on a possible criterion to evaluate the adequacy of the length of the test installation.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.
Introduction

This European Standard is a revision of EN 1317-2:1998. This standard includes improved impact test procedures and allows for the introduction of Families of Products and a report template.

In order to improve safety the design of roads may require the installation of safety barriers including vehicle parapets which are intended to contain errant vehicles safely for the benefit of the occupants and other road users on sections of road and at particular locations defined by the national or local authorities.

In this standard, several levels of performance are given for the three main criteria relating to the restraint of a road vehicle:

— The containment level;
— The impact severity levels;
— The deformation as expressed by the working width and vehicle intrusion (including normalised values).

The different performance levels of safety barriers including vehicle parapets will enable national and local authorities to specify the performance class of the system to be deployed.

The description of a safety barrier including vehicle parapet system conforming to this standard incorporates the relevant classes and performance levels of the product.

To ensure satisfactory product design it is highly recommended to consider the requirements of this standard and the references in Clause 2, together with the requirements of EN 1317-1. The evaluation of conformity and the durability should meet the requirements of EN 1317-5.
1 Scope

This European Standard specifies requirements on impact performance of safety barriers, including vehicle parapets, classes of containment, working width, vehicle intrusion and impact severity levels.

NOTE This European Standard should be read in conjunction with EN 1317-1. Both these standards support EN 1317-5.

The modifications included in standard are not a change of test criteria, in the sense of the EN 1317-5:2007+A1:2008, ZA.3.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 1317-1:2010, Road restraint systems — Part 1: Terminology and general criteria for test methods

prEN 1317-6, Road restraint systems — Pedestrian restraint systems — Part 6: Pedestrian Parapet

3 Performance classes

3.1 General

Safety barriers including vehicle parapets shall conform to the requirements of 3.2, 3.3 and 3.5 when tested in accordance with impact test criteria defined in Table 1.

Vehicle specifications and deviations shall conform to EN 1317-1.

<table>
<thead>
<tr>
<th>Test</th>
<th>Impact speed km/h</th>
<th>Impact angle °</th>
<th>Total mass kg</th>
<th>Type of vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB 11</td>
<td>100</td>
<td>20</td>
<td>900</td>
<td>Car</td>
</tr>
<tr>
<td>TB 21</td>
<td>80</td>
<td>8</td>
<td>1 300</td>
<td>Car</td>
</tr>
<tr>
<td>TB 22</td>
<td>80</td>
<td>15</td>
<td>1 300</td>
<td>Car</td>
</tr>
<tr>
<td>TB 31</td>
<td>80</td>
<td>20</td>
<td>1 500</td>
<td>Car</td>
</tr>
<tr>
<td>TB 32</td>
<td>110</td>
<td>20</td>
<td>1 500</td>
<td>Car</td>
</tr>
<tr>
<td>TB 41</td>
<td>70</td>
<td>8</td>
<td>10 000</td>
<td>Rigid HGV</td>
</tr>
<tr>
<td>TB 42</td>
<td>70</td>
<td>15</td>
<td>10 000</td>
<td>Rigid HGV</td>
</tr>
<tr>
<td>TB 51</td>
<td>70</td>
<td>20</td>
<td>13 000</td>
<td>Bus</td>
</tr>
<tr>
<td>TB 61</td>
<td>80</td>
<td>20</td>
<td>16 000</td>
<td>Rigid HGV</td>
</tr>
<tr>
<td>TB 71</td>
<td>65</td>
<td>20</td>
<td>30 000</td>
<td>Rigid HGV</td>
</tr>
<tr>
<td>TB 81</td>
<td>65</td>
<td>20</td>
<td>38 000</td>
<td>Articulated HGV</td>
</tr>
</tbody>
</table>

3.2 Containment levels

The containment levels of safety barriers including vehicle parapets shall conform to the requirements of Table 2 when tested in accordance with the vehicle impact test criteria defined in Table 1.
Table 2 — Containment levels

<table>
<thead>
<tr>
<th>Containment levels</th>
<th>Acceptance test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low angle containment</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>TB 21</td>
</tr>
<tr>
<td>T2</td>
<td>TB 22</td>
</tr>
<tr>
<td>T3</td>
<td>TB 41 and TB 21</td>
</tr>
<tr>
<td>Normal containment</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>TB 31</td>
</tr>
<tr>
<td>N2</td>
<td>TB 32 and TB 11</td>
</tr>
<tr>
<td>Higher containment</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>TB 42 and TB 11</td>
</tr>
<tr>
<td>L1</td>
<td>TB 42 and TB32 and TB 11</td>
</tr>
<tr>
<td>H2</td>
<td>TB 51 and TB 11</td>
</tr>
<tr>
<td>L2</td>
<td>TB 51 and TB32 and TB 11</td>
</tr>
<tr>
<td>H3</td>
<td>TB 61 and TB 11</td>
</tr>
<tr>
<td>L3</td>
<td>TB 61 and TB32 and TB 11</td>
</tr>
<tr>
<td>Very high containment</td>
<td></td>
</tr>
<tr>
<td>H4a</td>
<td>TB 71 and TB 11</td>
</tr>
<tr>
<td>H4b</td>
<td>TB 81 and TB 11</td>
</tr>
<tr>
<td>L4a</td>
<td>TB 71 and TB32 and TB 11</td>
</tr>
<tr>
<td>L4b</td>
<td>TB 81 and TB32 and TB 11</td>
</tr>
</tbody>
</table>

NOTE 1 Low angle containment levels are intended to be used only for temporary safety barriers. Temporary safety barriers can also be tested for higher levels of containment.

NOTE 2 A successfully tested barrier at a given containment level should be considered as having met the containment requirements of any lower level, except that N1 and N2 do not include T3, H-Levels do not include L-Levels and that H1, ..., H4b do not include N2.

NOTE 3 Because testing and development for very high containment safety barriers in different countries has taken place using significantly different types of heavy vehicles, both tests TB 71 and TB 81 are included in the standard at present. The two containment levels H4a and H4b should not be regarded as equivalent and no hierarchy is given between them. The same holds for the two containment levels L4a and L4b.

NOTE 4 The performance of Containment Classes L is enhanced in respect to the corresponding H classes by the addition of Test TB 32.

The evaluation of a vehicle restraint system within the range of containment levels T3, N2, H1, H2, H3, H4a, H4b, L1, L2, L3, L4a and L4b shall require the carrying out of different tests:

a) A test according to the maximum level of containment for that particular system; and
b) Test(s) using cars in order to verify that satisfactory containment of the maximum level is also compatible with safety for a range of cars.

3.3 Impact severity

The evaluation of vehicle occupant impact severity assessment indices ASI and THIV shall be carried out for cars. For cars ASI and THIV shall conform to the requirements of Table 3.

These indices are defined in EN 1317-1:2010.

As a function of the value of the ASI and THIV indices, three impact severity classes A, B and C are defined in Table 3.

Impact severity level A affords a greater level of safety for the occupant of an errant car than level B, and level B greater than level C.

Test measures, appropriately adjusted in accordance with EN 1317-1:2010, 6.3, shall be directly compared to the values in Table 3.

Table 3 — Impact severity levels

<table>
<thead>
<tr>
<th>Impact severity level</th>
<th>Index values</th>
<th>and</th>
<th>THIV ≤ 33 km/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ASI ≤ 1,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>ASI ≤ 1,4</td>
<td>and</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ASI ≤ 1,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Location of the ATD

The ATD, when required by EN 1317-1, shall be located in the front seat of the car on the impact side and secured by means of the vehicle seat belt.

3.5 Deformation of the restraint system

The deformation of safety barriers during impact tests is characterised by the dynamic deflection, working width and vehicle intrusion (see Figure 1).

The accuracy required for the measurement of the dynamic deflection and for the working width shall be 10 % but not less than 0,1 m.

The measurement shall be recorded in metres (m) to at least two decimal places and reported to one decimal place by mathematical rounding, i.e. 0,64 = 0,6; 0,65 = 0,7.

The rounded value of the working width shall not be allowed to become smaller than the real width of the safety barrier. In this case the value shall to be rounded up; e.g. System width = 0,63 m, \(W_{\text{normalized}} \) = 0,64 m, then \(W_{\text{rounded}} \) = 0,7 m.

The dynamic deflection \(D_m \) shall be the maximum lateral dynamic displacement of any point of the traffic face of the restraint system.
The working width (W_m) is the maximum lateral distance between any part of the barrier on the undeformed traffic side and the maximum dynamic position of any part of the barrier. If the vehicle body deforms around the road vehicle restraint system so that the latter cannot be used for the purpose of measuring the working width, the maximum lateral position of any part of the vehicle shall be taken as an alternative (see Figure 1, d)).

The vehicle intrusion (V_{Im}) of the Heavy Goods Vehicle (HGV) is its maximum dynamic lateral position from the undeformed traffic side of the barrier; it shall be evaluated from high speed photographic or video recordings, in consideration of a notional load having the width and length of the vehicle platform and a total height of 4 m. The V_{Im} shall be evaluated by measuring the position and angle of the vehicle platform and assuming the notional load stays undeformed and rectangular to the vehicle platform or by using test vehicles with the notional load.

The vehicle intrusion (V_{Im}) of a bus is its maximum dynamic lateral position; it shall be evaluated from high speed photographic or video recordings.

The deformation of the restraint system shall be classified in accordance with Tables 4 and 5.

The actual and normalised values of dynamic deflection, working width and vehicle intrusion shall be measured and recorded in the test report.

Normalised Dynamic Deflection (D_n) in metres (m) =

$$D_n = \frac{M_i \times (V'_i \times \sin \alpha_i)^2}{M_m \times (V'_m \times \sin \alpha_m)^2}$$

Normalised Working Width (W_n) in metres (m) =

$$W_n = W_U + \left(W_m - W_U \right) \times \frac{M_i \times (V'_i \times \sin \alpha_i)^2}{M_m \times (V'_m \times \sin \alpha_m)^2}$$

Normalised Vehicle Intrusion (V_n) in metres (m) =

$$V_n = V_{Im} \times \frac{M_i \times (V'_i \times \sin \alpha_i)^2}{M_m \times (V'_m \times \sin \alpha_m)^2}$$

where

- Measured maximum Dynamic Deflection in metres (m) = D_m;
- Measured Working Width in metres (m) = W_m;
- Undeformed width of the system = W_U;
- Measure Vehicle Intrusion in metres (m) = V_{Im};

Specified Total Mass in kilograms (kg) = M_i;
Specified Velocity in metres per second (m/s) = V'_i;
Specified Angle in degrees (°) = α_i;

See Table 1.

Specified Total Mass in kilograms (kg) = M_m;
Specified Velocity in metres per second (m/s) = V'_m;
Specified Angle in degrees (°) = α_m;

With the above procedure, the Normalised Dynamic Deflection and Normalised Working Width shall be computed from measured data, or from other test data recorded during tests performed before the publication of the present standard, provided the data collection methods conform to the requirements of this standard.

Likewise, Vehicle Intrusion shall be evaluated, from high speed photographic or video recordings, and then normalised using measured data.

The accuracy required for the evaluation of Vehicle Intrusion shall be ± 0,2 m.
Table 4 — Levels of normalised working width

<table>
<thead>
<tr>
<th>Classes of normalised working width levels</th>
<th>Levels of normalised working width m</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>(W_{N} \leq 0.6)</td>
</tr>
<tr>
<td>W2</td>
<td>(W_{N} \leq 0.8)</td>
</tr>
<tr>
<td>W3</td>
<td>(W_{N} \leq 1.0)</td>
</tr>
<tr>
<td>W4</td>
<td>(W_{N} \leq 1.3)</td>
</tr>
<tr>
<td>W5</td>
<td>(W_{N} \leq 1.7)</td>
</tr>
<tr>
<td>W6</td>
<td>(W_{N} \leq 2.1)</td>
</tr>
<tr>
<td>W7</td>
<td>(W_{N} \leq 2.5)</td>
</tr>
<tr>
<td>W8</td>
<td>(W_{N} \leq 3.5)</td>
</tr>
</tbody>
</table>

NOTE 1 In specific cases, a class of working width level less than W1 may be specified.

NOTE 2 The dynamic deflection, the working width and the vehicle intrusion allow determination of the conditions for installation of each safety barrier and also to define the distances to be provided in front of obstacles to permit the system to perform satisfactorily.

NOTE 3 The deformation depends on both the type of system and the impact test characteristics.

Table 5 — Levels of normalised vehicle intrusion

<table>
<thead>
<tr>
<th>Classes of normalised vehicle intrusion levels</th>
<th>Levels of normalised vehicle intrusion m</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/1</td>
<td>(V_{N} \leq 0.6)</td>
</tr>
<tr>
<td>V/2</td>
<td>(V_{N} \leq 0.8)</td>
</tr>
<tr>
<td>V/3</td>
<td>(V_{N} \leq 1.0)</td>
</tr>
<tr>
<td>V/4</td>
<td>(V_{N} \leq 1.3)</td>
</tr>
<tr>
<td>V/5</td>
<td>(V_{N} \leq 1.7)</td>
</tr>
<tr>
<td>V/6</td>
<td>(V_{N} \leq 2.1)</td>
</tr>
<tr>
<td>V/7</td>
<td>(V_{N} \leq 2.5)</td>
</tr>
<tr>
<td>V/8</td>
<td>(V_{N} \leq 3.5)</td>
</tr>
<tr>
<td>V/9</td>
<td>(V_{N} > 3.5)</td>
</tr>
</tbody>
</table>

NOTE 1 In specific cases, a class of vehicle intrusion level less than V/1 may be specified.

NOTE 2 The dynamic deflection, the working width and the vehicle intrusion allow determination of the conditions for installation of each safety barrier and also to define the distances to be provided in front of obstacles.
Figure 1 (to be continued)
3.6 Vehicle pedestrian parapets

Where a vehicle parapet is required to function as a combined vehicle/pedestrian parapet it shall also meet the requirements for pedestrian parapets (refer to prEN 1317-6).

4 Impact test acceptance criteria

4.1 General

After testing in accordance with the vehicle impact test criteria defined in Table 1 safety barriers including vehicle parapets shall conform to the requirements of 3.3, 3.5, 4.2 and 4.6, and the test vehicle shall conform to the requirements of 4.3, 4.4 and 4.5.

The test parameters on which acceptance criteria shall be assessed are listed in Table 6 as a function of the containment level.

When during a test, after the end of the impact subsequent collisions of the vehicle with the safety barrier including vehicle parapet occur, these subsequent collisions shall not be considered for performance or acceptance.
Table 6 — Safety barrier test parameters

<table>
<thead>
<tr>
<th>Containment level</th>
<th>Safety barrier including vehicle parapet and vehicle behaviour</th>
<th>Impact severity level ASI-THIV</th>
<th>Vehicle deformation (VCDI)</th>
<th>Safety barrier including vehicle parapet deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>TB 21</td>
<td>TB 21</td>
<td>TB 21</td>
<td>TB 21</td>
</tr>
<tr>
<td>T2</td>
<td>TB 22</td>
<td>TB 22</td>
<td>TB 22</td>
<td>TB 22</td>
</tr>
<tr>
<td>T3</td>
<td>TB 41 + TB 21</td>
<td>TB 21</td>
<td>TB 21</td>
<td>TB 41 + TB 21</td>
</tr>
<tr>
<td>N1</td>
<td>TB 31</td>
<td>TB 31</td>
<td>TB 31</td>
<td>TB 31</td>
</tr>
<tr>
<td>N2</td>
<td>TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 32 + TB 11</td>
</tr>
<tr>
<td>H1</td>
<td>TB 42 + TB 11</td>
<td>TB 11</td>
<td>TB 11</td>
<td>TB 42 + TB 11</td>
</tr>
<tr>
<td>H2</td>
<td>TB 51 + TB 11</td>
<td>TB 11</td>
<td>TB 11</td>
<td>TB 51 + TB 11</td>
</tr>
<tr>
<td>H3</td>
<td>TB 61 + TB 11</td>
<td>TB 11</td>
<td>TB 11</td>
<td>TB 61 + TB 11</td>
</tr>
<tr>
<td>H4a</td>
<td>TB 71 + TB 11</td>
<td>TB 11</td>
<td>TB 11</td>
<td>TB 71 + TB 11</td>
</tr>
<tr>
<td>H4b</td>
<td>TB 81 + TB 11</td>
<td>TB 11</td>
<td>TB 11</td>
<td>TB 81 + TB 11</td>
</tr>
<tr>
<td>L1</td>
<td>TB 42 + TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 32 + TB 11 + TB 11(^a)</td>
</tr>
<tr>
<td>L2</td>
<td>TB 51 + TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 51 + TB 32 + TB 11(^a)</td>
</tr>
<tr>
<td>L3</td>
<td>TB 61 + TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 61 + TB 32 + TB 11(^a)</td>
</tr>
<tr>
<td>L4a</td>
<td>TB 71 + TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 71 + TB 32 + TB 11(^a)</td>
</tr>
<tr>
<td>L4b</td>
<td>TB 81 + TB 32 + TB 11</td>
<td>TB 32 + TB 11(^a)</td>
<td>TB 32 + TB 11</td>
<td>TB 81 + TB 32 + TB 11(^a)</td>
</tr>
</tbody>
</table>

\(^{a}\) The severity level is determined by the highest value from the tests, all results to be included in the report detailed in Annex A.

NOTE: VCDI is not an acceptance criterion.

All parameters of Table 6 shall be reported and the worst case shall be used to define the classes.

4.2 Safety barrier including vehicle parapet behaviour

The safety barrier including vehicle parapet shall contain the vehicle without complete breakage of any of the principal longitudinal elements of the system.

All totally detached parts of the safety barrier with a mass greater than 2,0 kg shall be identified, located and recorded in the test report with their size. This information can be used to define sites where the barriers with detached parts shall not be used to provide safety for people behind the barrier.

Elements of the safety barrier including vehicle parapet shall not penetrate the passenger compartment of the vehicle.
Deformations of, or intrusions into the passenger compartment that can cause serious injuries shall not be permitted.

Foundations, ground anchorages and fixings shall perform according to the design of the safety barrier including vehicle parapets.

NOTE The performance of barriers including vehicle parapets may be strongly influenced by the behaviour of their foundations, anchorages and fixing. If anchorages are embedded in soil, the test item should be installed in a soil corresponding to the specifications in the design of the barrier. If the barrier is designed to be installed on a bridge or on a retaining wall, the bearing capability of the supporting surface and the strength of the anchorages should be not less than the design requirements.

4.3 Test vehicle behaviour

During and after the impact, no more than one of the wheels of the vehicle shall completely pass over or under the safety barrier.

The vehicle shall not roll over (including rollover of the vehicle onto its side) during or after impact.

For tests with HGVs and buses, not more than 5 % of the mass of the ballast shall become detached or be split during the test up to the time when the wheel tracks of the vehicle leaves the exit box.

The vehicle shall leave the safety barrier including vehicle parapet after impact so that the wheel track does not cross a line parallel to the initial traffic face of the system, at a distance A plus the width of the vehicle plus 16 % of the length of the vehicle within a distance B from the last (namely closest to the downstream end of the barrier) point P, where the last of the vehicle wheel tracks re-crosses the original line of the traffic face of the barrier after initial impact, see Figure 2.

For cars and the other vehicles specified in Table 1 the distances A and B shall be as specified in Table 7.

<table>
<thead>
<tr>
<th>Vehicle type</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>2.2</td>
<td>10</td>
</tr>
<tr>
<td>other vehicles</td>
<td>4.4</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 2 — Exit Box Trajectories
4.4 Severity Index

The severity index ASI and THIV shall be computed using the vehicle instrumentation as specified in EN 1317-1. These values shall be quoted in the test report.

Severity indices shall be reported for all tests with cars.

4.5 Test vehicle deformation

The deformation of the interior of the vehicle shall be evaluated and recorded in the form of VCDI (Vehicle Cockpit Deformation Index) in all tests with cars as described in EN 1317-1.

4.6 Safety barrier deformation

The measured and normalised values for dynamic deflection and for the working width shall be determined and the levels quoted in the test report detailed in Annex A. Vehicle intrusion shall also be quoted in the test report for tests involving HGVs and buses.

4.7 Tests for system type tested safety barriers (Families of barriers)

A family of barriers can be derived from a single parent barrier. The parent barrier shall fulfill the requirements of a containment level. The parent barrier shall be the lowest working width member to define the upper containment level, and the highest severity level, for the family of barriers. A family of barriers might cover various containment levels and/or working width. The purpose of family of barriers is to avoid subsequent TB32 (for L1 to L4b), TB11 or TB21 (for T3 only) tests. Each barrier of the family shall be tested at least once with the heaviest vehicle in the containment class. This defines the containment and working width classes for the family member.

The severity level for each family member shall be defined by the parent barrier test.

The family of barriers shall be only relevant to the following three cases:

a) For barriers with single or multiple identically cross sectioned longitudinal elements, with a different spacing of posts or intermediate ground fixations;

b) For the case of a free-standing barrier, differing only in their unit length;

c) Barriers with additional height and additional parts, where the parts in contact with the vehicle during the TB11 test do not differ.

The family of barriers:

d) are assembled from the same components, excluding extra parts;

e) have the same family name;

f) have the same working mechanism for the system and for the components.

All other cases shall be treated as modified products.

5 Test methods

5.1 Test site

Test site shall be according to EN 1317-1:2010, 5.1.
5.2 Test vehicles

Test vehicles shall be according to EN 1317-1:2010, 5.2.

5.3 Safety barrier

5.3.1 General

Detailed descriptions and design specifications of the test item shall be included in the test report to enable verification of conformity of the installed system to be tested.

The design specification shall include reference to foundation performance requirements, and where the product is a vehicle parapet, the design specification shall include reference to the anchor/ground fixing.

5.3.2 Installation

The length of the safety barrier or vehicle parapet tested shall be sufficient to demonstrate the full performance characteristic of any longer installation. After the test the adequacy of the length of installation shall be checked by procedure as the one in Annex B. The test lengths shall be defined by the manufacturer prior to the test so that the car test(s) demonstrates the maximum severity of impact, and the large vehicle test demonstrates the maximum dynamic deflection characteristics.

End conditions (for example end anchorage) shall be provided in accordance with the safety barrier including vehicle parapet specification and defined by the manufacturer. If an end anchorage is used which is specifically for testing and not part of the design of the system being tested, this end anchorage shall be fully described in the test report. Any end anchorage should not restrict the maximum lateral deflection of the safety barrier.

Foundations shall meet the design specification.

When testing pretensioned systems, where tension can be adjusted (for example cable barriers), the small vehicle test shall be performed with a tension corresponding to a temperature of -10 °C and the large vehicle test with a tension corresponding to a temperature of +30 °C. For the containment levels with only one test, the tension shall correspond to a temperature of 0 °C. The data for the recommended tensions/temperature shall be supplied by the manufacturer.

Where a vehicle parapet is required to have infilling or other modification in order that it may function as a vehicle pedestrian parapet, this infilling or other modification shall be included in the test installation if it will affect the performance of the vehicle parapet.

5.3.3 Position of the impact point

The impact point shall be chosen by the test house and shall demonstrate the worst-case testing conditions of the safety barrier including vehicle parapet, and shall include any sensitive feature of the design. If the test house chooses an impact point other than that at a point about one third of the installation length, in order to ensure worst-case conditions, then this choice shall be justified in the test report.

5.4 Accuracies and limit deviations of impact speeds and approach angle

5.4.1 Vehicle impact speed

Vehicle impact speed shall be measured along the vehicle approach path no further than 6 m before the impact point. The overall accuracy of speed measurement shall be within ± 1 %.

The impact speed limit deviation shall be: +7 % 0 %.
5.4.2 Vehicle approach angle

Vehicle approach angle shall be measured along the vehicle approach path no further than 6 m before the impact point. The overall accuracy shall be within $\pm 0.5^\circ$.

The impact angle limit deviation shall be: $+1.5^\circ$
-1.0°.

5.4.3 Combined limit deviation of speed and angle

To avoid large differences of impact energy, the maximum limit deviation for speed and angle shall not be combined.

At the upper angle tolerance of $+1.5^\circ$ the upper speed limit deviation is reduced to $+5\%$, and at the angle limit deviation of -1.0° the lower speed limit deviation is increased to $+2\%$.

The complete combined tolerance envelope shall be shown in Figure 3.

![Diagram showing envelope of combined tolerances](image)

Figure 3 — Envelope of combined tolerances

The given limit deviations only serve to take account of different test installations or test procedures and are not intended to provide a spectrum from which the energy of the test can be chosen.

In any case, the nominal values of Table 1 shall serve as a basis.

5.5 Vehicle instrumentation

Vehicle instrumentation shall be according to EN 1317-1:2010, Clause 6.
5.6 Photographic coverage

Photographic coverage shall be sufficient to clearly describe the barrier including vehicle parapet behaviour and the vehicle motion during and after impact.

A known scale shall be visible in overhead camera view to assist measurement from the photographic coverage following the test.

High speed cameras shall be operated at a minimum of 200 frames per second.

Normal speed cameras shall be operated at a minimum of 24 frames per second.

![Diagram of camera layout](image)

Key

1. Overhead Coverage Area
2. Camera
3. Barrier

Figure 4 — Layout of cameras for recording tests

The minimum camera layout as shown in Figure 4 shall be adopted for safety barrier including vehicle parapet testing:

a) One optional panned camera at normal speed to cover the path of the vehicle;

b) One or two overhead high-speed cameras, located in a way to cover the vehicle motion from at least 6 m before the impact point to a distance to record the performance of the safety barrier including vehicle parapet;

c) One high speed camera looking over the safety barrier including vehicle parapet from a point upstream impact in order to record the vehicle roll, vertical lift, penetration and sequence of action as the system is struck;

d) One high speed camera looking along the system from the opposite end to the camera in item c).
NOTE The need for additional cameras should be considered to cover areas of special interest.

6 Test report

The test report shall be comply with Annex A.
Annex A
(normative)

Detailed Test Report Template

In addition to video records in accordance with 5.6, the test report shall include the following information as a minimum, in the order given. All drawings and associated documents shall be clearly numbered and dated.

Test Report Cover

- Name of test laboratory
- Date of report
- Name of client
- Name of test item
- Date of test
- Test number and/or test report number (version number if applicable)
- Test type and reference to standard
- Number of pages including annexes
- Official test report language
- Approval of report

Table of Contents

1. Test laboratory
2. Client
3. Test Item
4. Test procedure
 4.1 Test type
 4.2 Test area
 4.3 Installation and description of test Item
 4.4 Description of test vehicle
5. Results
 5.1 Test condition
 5.2 Test item
 5.3 Test vehicle
 5.4 Assessment of the impact severity
6. General statements
7. Approval of report
8. Annexes
 A. General test item arrangement drawings (overview drawing) of the complete item tested and all component drawings, both including number and date of issue, dimensions and tolerances
 B. Barrier installation manual including dimensions and tolerances
 C. Photographs
 D. Video records
 E. Ground condition description
1 Test laboratory

1.1 Name
1.2 Address
1.3 Telephone number
1.4 Facsimile number
1.5 Internet address
1.6 Test site location
1.7 Name and address of body which accredited the test laboratory
1.8 Notification/accreditation number with date of approval, valid at the time of testing
1.9 Additional information

2 Client

2.1 Name
2.2 Address
2.3 Telephone number
2.4 Facsimile number
2.5 Internet address
2.6 Additional information

3 Test item

3.1 Name of test item
3.2 Date of installation
3.3 Date of test
3.4 Laboratory’s test reference number
3.5 Additional information

4 Test procedure

4.1 Test Type (according to Table 1)

4.1.1 Type of impact test (for example, TB11)
4.1.2 Additional information (e.g. details of other testing carried out within the barrier “Family”)

4.2 Test area

4.2.1 Description of type and condition of test area
4.2.2 Sketch of vehicle approach to indicate impact point
4.2.3 Where the product is a vehicle parapet, the distance between the traffic face of the vehicle parapet and the bridge deck edge
4.2.4 Type of underground
4.2.5 Class/condition of underground
4.2.6 Additional Information

4.3 Installation and detailed description of test item

4.3.1 Conformity between test item drawings and item tested (Yes/No)
4.3.2 Conformity between installation manual and item installed (Yes/No)
4.3.3 Description of the VRS tested which shall include, as a minimum:
 4.3.3.1 Ground fixing details
 4.3.3.2 Total length of test item in metres (m)
 4.3.3.3 Height of the test item in the impact area
 4.3.3.4 Post spacing and/or unit length (in metres (m))
 4.3.3.5 Where the product is pretensioned, the value(s) of the tension(s) shall be indicated
 4.3.3.6 Where the product is a vehicle parapet, the design specification shall include reference to anchor/ground fixing and prEN 1317-6 requirements if pedestrian protection is included
 4.3.3.7 Any additional information to describe the VRS sufficiently (e.g. fastening torques)
4.4 Description of test vehicle

4.4.1 Vehicle make and model
4.4.2 Model year and/or initial registration
4.4.3 Vehicle identification number (VIN)
4.4.4 Vehicle mass according to EN 1317-1:2010, Table 1
4.4.5 Location of the centre of gravity of the vehicle in the test condition according to EN 1317-1:2010, Table 1
 NOTE For tests with cars, the centre of gravity should be measured without the ATD in the vehicle.
4.4.6 Position of vehicle instrumentation and measured displacement from vehicle centre of gravity
4.4.7 Added ballast
 4.4.7.1 Ballast type/description
 4.4.7.2 General ballast position
 4.4.7.3 Total ballast mass
4.4.8 ATD (if fitted)
 4.4.8.1 ATD type
 4.4.8.2 ATD mass
 4.4.8.3 ATD position in vehicle
4.4.9 Total test mass in kilograms (kg)
4.4.10 Dimensions and characteristics of vehicle, which shall include as a minimum:
 4.4.10.1 Total vehicle length
 4.4.10.2 Total vehicle width (excluding side mirrors)
 4.4.10.3 Wheel track
 4.4.10.4 Number of axles
 4.4.10.5 Wheel radius
 4.4.10.6 Wheel base
 4.4.10.7 Height of platform, for HGVs only
4.4.11 Vehicle roadworthiness assessment (including date of assessment)
4.4.12 Any additional information

5 Results

5.1 Test Conditions

5.1.1 Actual impact speed in kilometres per hour (km/h)
5.1.2 % difference from nominal speed
5.1.3 Actual impact angle in degrees (*)
5.1.4 Difference from nominal angle in degrees (*)
5.1.5 General description of test sequence
5.1.6 Air temperature
5.1.7 Any additional information

5.2 Test item

 General
5.2.1 Dynamic deflection (D_m) in metres (m)
5.2.2 Normalised dynamic deflection (\bar{D}_m) in metres (m)
5.2.3 Working width (W_m) in metres (m)
5.2.4 Normalised Working width (\bar{W}_m) in metres (m)
5.2.5 Class of normalised working width
5.2.6 Vehicle intrusion (I_m) in metres (m), for HGVs and buses only
5.2.7 Maximum permanent deflection in metres (m)
5.2.8 Length of contact in metres (m)
5.2.9 Actual impact point location
5.2.10 The permanent displacement of the end anchorage caused by the impact
5.2.11 The permanent displacement in the joints of the main rail or in connection elements
5.2.12 Description of damage to test item including foundations, ground anchorages and fixings
NOTE Optional: For vehicle restraint systems to be mounted on bridges, retaining walls, or on other structures, the time history of the forces and moments on the fixings or other critical points during the impact may also be recorded.

Impact test acceptance criteria
5.2.13 Safety barrier including vehicle parapet contained the test vehicle (Yes/No) – if no, description is required.
5.2.14 Complete breakage of any principal longitudinal elements of the test item (Yes/No) – if yes, description is required.
5.2.15 Details of test item parts over the mass of 2 kg totally detached:
 5.2.15.1 Identification
 5.2.15.2 Mass in kilograms (kg)
 5.2.15.3 Final location measured perpendicular to the original traffic face of the barrier
 5.2.15.4 Final location measured along the line of the original traffic face of the barrier starting from the detachment point
5.2.16 Elements of the safety barrier including vehicle parapet penetrated the passenger compartment of the vehicle (Yes/No) – if yes, description of penetration is required.
5.2.17 Deformations of and/or intrusions into the passenger compartment (Yes/No) – if yes, description of deformations and/or intrusions are required.

5.3 Test vehicle

General
5.3.1 General description of vehicle trajectory
5.3.2 Vehicle cockpit deformation index VCDI (required for cars)
5.3.3 Description of the damage and deformation to the test vehicle
5.3.4 Description of any contact of the dummy head with part of the barrier

Impact test acceptance criteria
5.3.4 Actual impact speed and angle within tolerance limits? (Yes/No)
5.3.5 Actual impact speed and angle combination within the tolerance envelope in Figure 3 (Yes/No)
5.3.6 During and after the impact, no more than one wheel of the vehicle passes over the rearmost part of the deformed system (Yes/No)
5.3.7 Vehicle rolls over during the test (Yes/No)
5.3.8 For tests with HGVs, more than 5 % of the mass of the ballast becomes detached or split during the test up to the time when the vehicle comes to rest (Yes/No) – if yes, record %.
5.3.9 Vehicle within "exit box" (Yes/No)
5.3.10 For vehicle restraint systems to be mounted on bridges, retaining walls, or on other structures: Vehicle or tested item supported by any structure beyond the bridge deck edge (Yes/No)

5.4 Assessment of the impact severity

All severity indices shall be rounded to the nearest whole number, unless stated otherwise. The filtering frequency applied to the raw data shall also be stated.

General
5.4.1 Graphs of linear accelerations and angular velocities

Impact test acceptance criteria
5.4.2 Acceleration severity index, ASI (rounded to one decimal place)
 5.4.2.1 Graph of ASI versus Time
5.4.3 Theoretical head impact velocity, THIV
 5.4.3.1 Time of flight of the theoretical head in milliseconds (ms)
 5.4.3.2 THIV in kilometres per hour (km/h)
 5.4.3.3 Graphs of flight time and THIV

6 General statements

6.1 The test results in this report relate only to the VRS tested.
6.2 This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

7 Approval of report

7.1 Signature(s)
7.2 Name(s) of authorised and responsible person(s) of Test House
7.3 Position(s)
7.4 Date

8 Annexes

A. General test item arrangement drawings (overview drawing) of the complete item tested and all component drawings, both including number and date of issue, dimensions and tolerances. All drawings to be authorised by the client, by signing the drawings.
B. Barrier installation manual including dimensions and tolerances.
C. Photographs (with a minimum print size in height and width of 8 cm)
 C.1. Photographs of the test item to be tested before the test
 C.2. Interior and exterior photographs of the test vehicle before the test (including photographs of instrumentation location)
 C.3. Photographs of the test item after the test (including damage to the test item and detached parts greater than 2 kg)
 C.4. Interior and exterior photographs of the test vehicle after the test (including the damage and deformation)
 C.5. Sequences and additional photographs (no specific photo size required)
D. Video records
E. Ground condition description
An applicable procedure to check, after the tests, that the length of the installation is sufficient to demonstrate the full performance of the system consists in verifying that only longitudinal forces are transferred to the end anchorages, by the following procedure.

The static lateral deflection of the barrier should not reach to the front or the end anchorage of the test installation. This requires that the static lateral deflection of the first element (or the first section between two posts) be null, within measurement tolerance (see Figure B.1, a)). If the anchorage is such that prevents the lateral displacement of all the first element, the static lateral displacement of the second element shall be null, within measurement tolerance (see Figure B.1, b)).

Key
1 Test length sufficient
2 Test length not sufficient
3 Test length not sufficient
4 Face of undeformed barrier

Figure B.1 — Length of barrier installed for test
Bibliography

British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions
British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions. It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.
Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
BSI offers Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.
Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001
Email: plus@bsigroup.com

Buying standards
You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website www.bsigroup.com/shop. In addition, all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services.
Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001
Email: orders@bsigroup.com

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards
BSI provides a wide range of information on national, European and international standards through its Knowledge Centre.
Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005
Email: knowledgecentre@bsigroup.com

Various BSI electronic information services are also available which give details on all its products and services.
Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048
Email: info@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.
Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001
Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at www.bsigroup.com/BSOL
Further information about BSI is available on the BSI website at www.bsigroup.com/standards

Copyright
Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070
Email: copyright@bsigroup.com

BSI Group Headquarters
389 Chiswick High Road London W4 4AL UK
Tel +44 (0)20 8996 9001
Fax +44 (0)20 8996 7001
www.bsigroup.com/standards

raising standards worldwide™